首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3930篇
  免费   190篇
  国内免费   24篇
  2023年   76篇
  2022年   105篇
  2021年   292篇
  2020年   169篇
  2019年   194篇
  2018年   264篇
  2017年   162篇
  2016年   235篇
  2015年   286篇
  2014年   309篇
  2013年   324篇
  2012年   327篇
  2011年   272篇
  2010年   178篇
  2009年   157篇
  2008年   161篇
  2007年   143篇
  2006年   107篇
  2005年   104篇
  2004年   65篇
  2003年   56篇
  2002年   37篇
  2001年   6篇
  2000年   6篇
  1999年   9篇
  1998年   11篇
  1997年   6篇
  1996年   6篇
  1995年   8篇
  1994年   6篇
  1993年   8篇
  1992年   8篇
  1991年   4篇
  1990年   1篇
  1989年   5篇
  1988年   2篇
  1987年   5篇
  1986年   2篇
  1985年   3篇
  1984年   2篇
  1983年   2篇
  1982年   5篇
  1981年   4篇
  1980年   2篇
  1979年   1篇
  1978年   2篇
  1976年   1篇
  1974年   3篇
  1972年   1篇
  1968年   1篇
排序方式: 共有4144条查询结果,搜索用时 125 毫秒
81.
Abstract

Biosynthesis of metal nanoparticles is an area of interest among researchers because of its eco-friendly approach. Current study focuses at biosynthesis of silver nanoparticles (AgNPs) and optimization of physico-chemical conditions to obtain mono-dispersed and stable AgNPs having antimicrobial activity. Initially Bacillus mojavensis BTCB15 produced silver nanoparticles (AgNPs) of 105?nm. Silver nanoparticles (AgNPs) were characterized by particle size analyzer, UV-Vis Spectroscopy, Fourier transforms infrared spectroscopy (FTIR), Atomic force microscopy (AFM), and X-ray diffraction (XRD). Whereas, under optimal conditions of temperature 55?°C, pH 8, addition of surfactant Tween 20, and metal ion K2SO4, about 104% size reduction was achieved with average size of 2.3nm. Molecular characterization revealed 98% sequence homology with Bacillus mojavensis. AgNPs exhibited antibacterial activity at concentrations ranging from 0.5 to 2.5?µg/µl against Escherichia coli BTCB03, Klebsiella pneumonia BTCB04, Acinetobacter sp. BTCB05, and Pseudomonas aeruginosa BTCB01 but none against Staphylococcus aureus BTCB02. Highest antibacterial activity was observed at 0.27?µg/µl and lowest at 0.05?µg/µl of AgNPs indicated by zone of inhibition. Conclusively, under optimum conditions, Bacillus mojavensis BTCB15 was able to produce AgNPs of 2.3?nm size and had antibacterial activity against multi drug resistant pathogens.  相似文献   
82.
Current study was undertaken to evaluate the in vitro antifungal and antibacterial potential of methanol extract and subsequent fractions obtained after partitioning in organic solvents with variable polarity of the aerial parts of the tree Taxus wallichiana Zucc. Traditionally, this plant is often used in folk medicines in Pakistan for treating microbial infections. In order to rationalize the traditional use, methanol extracts of leaf, bark, and heartwood of Taxus wallichiana Zucc. were tested against six bacteria and six fungal strains using the Hole diffusion and macro-dilution methods. All extracts and fractions displayed significant antimicrobial effect. Only three fungal strains, Trichophyton longifusus, Microspoum canis, and Fusarium solani were susceptible to the extracts and fractions with MICs ranging from 0.08 to 200 mg/mL. In case of bacterial strains, Staphylococcus aureus, Pseudomonas aeruginosa and Salmonella typhi were susceptible to the extracts and fractions with MICs ranging from 0.08 to 200 mg/mL. Comparison results were carried out using imipinem, miconazole and amphotericin B as standard antibiotics.  相似文献   
83.
Galinsosides A (1) and B (2), new flavanone glucosides together with two known flavanones, 7,3′,4′-trihydroxyflavanone (3) and 3,5,7,3′,4′-pentahydroxyflavanone (4) have been isolated from an ethyl acetate- soluble fraction of Galinsoga parviflora. Their structures were assigned on the basis of spectral studies. Compound 1 showed significant antioxidant and urease inhibitory activity while compound 2 was moderately active. On the other hand, 2 showed inhibitory potential against α-glucosidase.  相似文献   
84.
A series of new benzenesulfonamides, most of which are chiral, incorporating 1, 3, 4-oxadiazole and amino acid moieties have been synthesized. Some of these compounds were screened for antimalarial activity and also evaluated for their ability to inhibit hem polymerization. The electrophoretic analysis indicated that one compound was effective in inhibiting the degradation of hemoglobin. The synthesized compounds were tested in mice infected with Plasmodium berghei. These derivatives have the potential for the development of novel antimalarial lead compounds.  相似文献   
85.
A series of 15 previously reported N4-substituted isatin-3-thiosemicarbazones 3a-o has been screened for cytotoxic, antibacterial, antifungal and urease inhibitory activities. Compounds 3b, 3e and 3n proved to be active in cytotoxicity assay; 3e exhibited a high degree of cytotoxic activity (LD50 = 1.10 × 10? 5 M). Compound 3h exhibited significant antibacterial activity against B. subtilis, whereas compounds 3a, 3k and 3l displayed significant antifungal activity against one or more fungal strains i.e. T. longifusus, A. flavus and M. canis. In human urease enzyme inhibition assay, compounds 3g, 3k and 3m proved to be the most potent inhibitors, exhibiting relatively pronounced inhibition of the enzyme. These compounds, being non-toxic, could be potential candidates for orally effective therapeutic agents to treat certain clinical conditions induced by bacterial ureases like H. pylori urease. This study presents the first example of inhibition of urease by isatin-thiosemicarbazones and as such provides a solid basis for further research on such compounds to develop more potent inhibitors.  相似文献   
86.
In searchof the potenttherapeutic agent as an α-glucosidase inhibitor, we have synthesized twenty-five analogs (125) of quinoline-based Schiff bases as an inhibitoragainst α-glucosidase enzyme under positive control acarbose (IC50 = 38.45 ± 0.80 µM). From the activity profile it was foundthat analogs 1, 2, 3, 4, 11, 12 and 20with IC50values 12.40 ± 0.40, 9.40 ± 0.30, 14.10 ± 0.40, 6.20 ± 0.30, 14.40 ± 0.40, 7.40 ± 0.20 and 13.20 ± 0.40 µMrespectively showed most potent inhibition among the series even than standard drug acarbose (IC50 = 38.45 ± 0.80 µM). Here in the present study analog 4 (IC50 = 6.20 ± 0.30 µM) was found with many folds better α-glucosidase inhibitory activity than the reference drug. Eight analogs like 5, 7, 8, 16, 17, 22, 24 and 25 among the whole series displayed less than 50% inhibition. The substituents effects on phenyl ring thereby superficially established through SAR study. Binding interactions of analogs and the active site of ligands proteins were confirmed through molecular docking study. Spectroscopic techniques like 1H NMR, 13C NMR and ESIMS were used for characterization.  相似文献   
87.
Pyrazole constitutes an important heterocyclic family covering a broad range of synthetic as well as natural products that exhibit numerous chemical, biological, agrochemical and pharmacological properties. In order to explore compounds with good fungicidal activity, a series of new pyrazole derivatives containing 5-phenyl-2-furan were designed and synthesized. In vitro and in vivo fungicidal activities were evaluated and the compound ethyl-1-(5-phenylfuran-2-carbonyl)-5-propyl-1H-pyrazole-3-carboxylate (I8) displayed significant fungicidal activity against various fungi, especially against P. infestans. The structures of the novel pyrazole derivatives were confirmed by 1H NMR, 13C NMR, MS, elemental analysis and X-ray single crystal diffraction. Further study showed that compound I8 might act on the synthesis of cell walls from morphological and ultrastructural studies by SEM and TEM. The results also revealed that compound I8 could block the nutritional transportation leading to cells senescence and death. These results suggested that the novel pyrazole derivatives proved to be promising lead compounds.  相似文献   
88.
89.
Helophytic plants contribute significantly in phytoremediation of a variety of pollutants due to their physiological or biochemical mechanisms. Phenol, which is reported to have negative/deleterious effects on plant metabolism at concentrations higher than 500 mg/L, remains hard to be removed from the environmental compartments using conventional phytoremediation procedures. The present study aims to investigate the feasibility of using P. australis (a helophytic grass) in combination with three bacterial strains namely Acinetobacter lwofii ACRH76, Bacillus cereus LORH97, and Pseudomonas sp. LCRH90, in a floating treatment wetland (FTW) for the removal of phenol from contaminated water. The strains were screened based on their phenol degrading and plant growth promoting activities. We found that inoculated bacteria were able to colonize in the roots and shoots of P. australis, suggesting their potential role in the successful removal of phenol from the contaminated water. Pseudomonas sp. LCRH90 dominated the bacterial community structure followed by A. lowfii ACRH76 and B. cereus LORH97. The removal rate was significantly high when compared with the individual partners, i.e., plants and bacteria separately. The plant biomass, which was drastically reduced in the presence of phenol, recovered significantly with the inoculation of bacterial consortia. Likewise, highest reduction in chemical oxygen demand (COD), biochemical oxygen demand (BOD), and total organic carbon (TOC) is achieved when both plants and bacteria were employed. The study, therefore, suggests that P. australis in combination with efficient bacteria can be a suitable choice to FTWs for phenol-degradation in water.  相似文献   
90.
ObjectivePhosphorous is an essential micronutrient of plants and involved in critical biological functions. In nature, phosphorous is mostly present in immobilized inorganic mineral and in the fixed organic form including phytic acid and phosphoesteric compounds. However, the bioavailability of bound phosphorous could be enhanced by the use of phosphate solubilizing microorganisms such as bacteria and fungi. The phytases are widespread in an environment and have been isolated from different sources comprising bacteria and fungi.MethodologyIn current studies, we show the successful use of gamma rays and EMS (Ethyl Methane Sulphonate) mutagenesis for enhanced activity of phytases in a fungal strain Sporotrichum thermophile.ResultsWe report an improved strain ST2 that could produce a clear halo zone around the colony, up to 24 mm. The maximum enzymatic activity was found of 382 U/mL on pH 5.5. However, the phytase activity was improved to 387 U/ml at 45 °C. We also report that the mutants produced through EMS showed the greater potential for phytase production.ConclusionThe current study highlights the potential of EMS mutagenesis for strain improvement over physical mutagens.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号